正弦函数的基本公式是:
\[ \sin(x) = y \]
其中,\( x \) 是自变量,\( y \) 是因变量,表示在直角三角形中,任意一锐角 \( \angle A \) 的对边与斜边的比值。
此外,正弦函数具有多种三角恒等式,以下是一些常用的公式:
和角公式
\[ \sin(A + B) = \sin A \cos B + \cos A \sin B \]
\[ \sin(A - B) = \sin A \cos B - \cos A \sin B \]
倍角公式
\[ \sin(2\alpha) = 2 \sin \alpha \cos \alpha \]
\[ \cos(2\alpha) = \cos^2 \alpha - \sin^2 \alpha \]
\[ \tan(2\alpha) = \frac{2 \tan \alpha}{1 - \tan^2 \alpha} \]
辅助角公式
\[ \sin(a + \frac{\pi}{2}) = \cos(a) \]
\[ \cos(a + \frac{\pi}{2}) = -\sin(a) \]
\[ \sin(\pi - a) = \sin(a) \]
\[ \cos(\pi - a) = -\cos(a) \]
\[ \sin(\pi + a) = -\sin(a) \]
\[ \cos(\pi + a) = -\cos(a) \]
\[ \sin(3\pi/2 - a) = -\cos(a) \]
\[ \cos(3\pi/2 - a) = -\sin(a) \]
\[ \sin(3\pi/2 + a) = -\cos(a) \]
\[ \cos(3\pi/2 + a) = \sin(a) \]
\[ \sin(2\pi + a) = \sin(a) \]
\[ \cos(2\pi + a) = \cos(a) \]
同角三角函数关系
\[ \sin^2(a) + \cos^2(a) = 1 \]
\[ \tan(a) = \frac{\sin(a)}{\cos(a)} \]
\[ \cot(a) = \frac{\cos(a)}{\sin(a)} \]
\[ \sec(a) = \frac{1}{\cos(a)} \]
\[ \csc(a) = \frac{1}{\sin(a)} \]
这些公式可以帮助你在不同的三角函数问题中转换和求解。希望这些信息对你有所帮助!